2024年广东省普通高中学业水平合格性考试数学考点专练48:事件的相互独立性(附答案及解析)
2023-11-07 13:52:30 学考宝 作者:佚名
Word文档版
学考宝(xuekaobao.com)友情提示:html格式不完整,如有需要请根据文末提示下载并进行二次校对Word文档。
考点专练48:事件的相互独立性
一、选择题
1.甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B( )
A.相互独立但不互斥 B.互斥但不相互独立
C.相互独立且互斥 D.既不相互独立也不互斥
2.袋内有大小相同的3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸到白球”,用B表示“第二次摸到白球”,则A与B是( )
A.互斥事件 B.相互独立事件
C.对立事件 D.非相互独立事件
3.掷一枚正方体骰子一次,设事件A:“出现偶数点”,事件B:“出现3点或6点”,则事件A,B的关系是( )
A.互斥但不相互独立 B.相互独立但不互斥
C.互斥且相互独立 D.既不相互独立也不互斥
4.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C的关系是( )
A.A与B,A与C均相互独立 B.A与B相互独立,A与C互斥
C.A与B,A与C均互斥 D.A与B互斥,A与C相互独立
5.某同学做对某套试卷中每一个选择题的概率都为0.9,则他连续做对第1题和第2题的概率是( )
A.0.64 B.0.56
C.0.81 D.0.99
6.甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个螺母,其中有180个A型的.今从甲、乙两盒中各任取一个,则恰好可配成A型螺栓的概率为( )
A. B.
C. D.
7.甲、乙两班各有36名同学,甲班有9名三好学生,乙班有6名三好学生,两班各派1名同学参加演讲活动,派出的恰好都是三好学生的概率是( )
A. B.
C. D.
8.坛子里放有3个白球,2个黑球,从中不放回地摸球,用A1表示第1次摸到白球,A2表示第2次摸到白球,则A1与A2( )
A.是互斥事件 B.是相互独立事件
C.是对立事件 D.不是相互独立事件
9.一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )
A.1 B.0.629
C.0 D.0.74或0.85
10.从应届高中生中选飞行员,已知这批学生体形合格的概率为,视力合格的概率为,其他综合标准合格的概率为,从中任选一学生,则三项均合格的概率为(假设三项标准互不影响)( )
A. B. C. D.
二、填空题
11.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________
12.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_______
13.有一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,2人试图独立地在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________
14.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________
三、解答题
15.在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(1)求甲队获第一名且丙队获第二名的概率;
(2)求在该次比赛中甲队至少得3分的概率.
16.计算机考试分理论考试与实际操作两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书.甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
参考答案及解析:
一、选择题
1.A 解析:对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.
2.D 解析:根据互斥事件、对立事件及相互独立事件的概念可知,A与B为非相互独立事件.
3.B 解析:事件A={2,4,6},事件B={3,6},事件AB={6},样本点空间Ω={1,2,3,4,5,6}.
所以P(A)==,P(B)==,P(AB)==×,即P(AB)=P(A)P(B),因此,事件A与B相互独立.当“出现6点”时,事件A,B同时发生,所以A,B不是互斥事件.
4.A 解析:由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.
5.C 解析:Ai表示“第i次做对题”,i=1,2,则P(A1∩A2)=P(A1)P(A2)=0.9×0.9=0.81.
6.C 解析:设“从甲盒中取一螺杆为A型螺杆”为事件A,“从乙盒中取一螺母为A型螺母”为事件B,则A与B相互独立,P(A)==,P(B)==,则从甲、乙两盒中各任取一个,恰好可配成A型螺栓的概率为P=P(A∩B)=P(A)P(B)=×=.
7.C 解析:两班各自派出代表是相互独立事件,设事件A,B分别为甲班、乙班派出的是三好学生,则事件AB为两班派出的都是三好学生,则P(AB)=P(A)P(B)=×=
8.D 解析:互斥事件和对立事件是同一次试验的两个不同时发生的事件,故选项A,C错.而事件A1的发生对事件A2发生的概率有影响,故两者是不相互独立事件.
9.B 解析:设“甲保险丝熔断”为事件A,“乙保险丝熔断”为事件B,则P(A)=0.85,P(B)=0.74,由事件A与B相互独立,得“两根保险丝都熔断”为事件AB,∴P(AB)=P(A)·P(B)=0.85×0.74=0.629.
10.B 解析:由题意知三项标准互不影响,∴P=××=
二、填空题
11.答案: 解析:由题意知P=×+×=
12.答案: 解析:设此队员每次罚球的命中率为p,则(1-p)2+2p(1-p)=,所以p=
13.答案:,
解析:甲、乙两人都未能解决的概率为×=×=,
问题得到解决就是至少有1人能解决问题,所以P=1-=
14.答案:
解析:加工出来的零件的正品率是××=,因此加工出来的零件的次品率为1-=
三、解答题
15.解:(1)设甲队获第一名且丙队获第二名为事件A,则P(A)=××=.
(2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B为“甲两场只胜一场”,设事件C为“甲两场都胜”,则事件“甲队至少得3分”为B ∪C,
则P(B∪C)=P(B)+P(C)=×+×+×=+=
16.解:(1)记“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则P(A)=×=,P(B)=×=,P(C)=×=.
因为P(C)>P(B)>P(A),所以丙获得合格证书的可能性最大.
(2)设“三人考试后恰有两人获得合格证书”为事件D,
由题易知三人是否获得合格证书相互独立,则
P(D)=P(AB)+P(AC)+P(BC)=××+××+××=
PAGE